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We explore the effectiveness of multi-objective optimization approach for performance 

evaluation of rainfall-runoff models. The multi-objective optimization of the Tank Model 

is investigated using historical data of the Eigenji Dam Basin. RMSE (root mean square 

error) that emphasizes the error at high flows and RR (root mean square of relative error) 

that emphasizes the error at low flows are used as objective functions and these functions 

are simultaneously minimized. The multi-objective ES that combines the Evolution 

Strategy (ES) with the Pareto ranking and the MOCOM-UA are applied to this problem. 

Results show that the ES is superior to the MOCOM-UA in the accuracy of Pareto-

optimal solutions. The multi-objective Tank Model optimization using the ES is also 

applied to the Osako and Syorenji Dam Basin. Moreover, the multi-objective 

optimizations of 2-layer, 3-layer and 4-layer Tank Model are carried out. Results indicate 

that the parameter set suited for an analysis purpose can be rationally selected by using 

shape of Pareto-optimal solutions in objective space. Results also show that the 

inadequacy and limitation of rainfall-runoff models can be identified and the performance 

evaluation of rainfall-runoff models can be done by using information obtained from 

multi-objective optimization approach. 

 

INTRODUCTION 

 

Conceptual rainfall-runoff models such as the Tank Model contain many model 

parameters, whose values are usually determined so that the model response closely 

matches the observed data. In this determination, single-objective optimization methods, 

which minimize a given objective function that measures the difference between model 

outputs and observed data, are widely used. However, the optimized parameters and 

model outputs considerably change according to selected objective function. Therefore, 

in the case of using the objective function that emphasizes the goodness of fit at high 
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flows, the model is able to simulate high flows with good accuracy but may be unable to 

simulate low flows well and vice versa. Another problem is that the single-objective 

optimization approach is inadequate to calibrate multi-output hydrologic models. 

Recently, multi-objective optimization methods that optimize several objective functions 

simultaneously have been applied to the hydrologic model calibration. In the multi-

objective optimization, it is needed to obtain the entire set of Pareto-optimal solutions. 

Although many optimization methods have been proposed to obtain Pareto-optimal 

solutions, the accuracy of solutions has seldom been examined and practical advantages 

of multi-objective approach have rarely been discussed. 

In this study, the multi-objective optimization of the Tank Model is investigated using 

historical data of three dam basins. The multi-objective ES and the MOCOM-UA are 

applied, and the accuracy of Pareto-optimal solutions is examined. Moreover, the multi-

objective optimizations of 2-layer, 3-layer and 4-layer Tank Model are also carried out, 

and the effectiveness of multi-objective optimization approach for performance 

evaluation of rainfall-runoff models is discussed. 

 

HYDROLOGICAL DATA AND RAINFALL-RUNOFF MODEL 

 

The Eigenji Dam Basin (131.5 km
2
), Osako Dam Basin (114.8 km

2
) and Syorenji Dam 

Basin (100.0 km
2
) in Japan were chosen for study basins. The hydrological data consist 

of daily mean inflow (runoff depth) at the dam site, daily areal precipitation and 

evapotranspiration. The data of 4-water-year was used for model calibration. 

The Tank Model (Figure 1) is a conceptual rainfall-runoff model developed by Sugawara. 

The model for long-term simulation has 16 parameters; side outlets a1-a5, bottom outlets 

b1-b3, side outlet heights from the bottom of each of the upper three tanks Z1-Z4 and initial 

storage depths S1-S4, which should be determined by the user. The feasible parameter 

space is defined by the upper and lower bounds of parameters. 

 

MULITI-OBJECTIVE OPTIMIZATION OF THE TANK MODEL 

 

Multi-objective optimization problem and classical method 

The multi-objective optimization problem with the decision variable (parameter) vector x 

= (x1, x2 ,,L  xn) and the objective function vector f (x) can be described as follows. 
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where m is the number of objective functions and X is the feasible region. The solution of 

this problem is referred to as Pareto-optimal solutions, whose mathematical definition is 

as follows. A decision variable vector x
1
 ∈  X is said to dominate other decision variable 

vector x
2
 ∈X, if mj ,,1L=∀ : fj (x

1
) ≤  fj (x

2
) and mj ,,1L=∃ : fj (x

1
) < fj (x

2
). The decision 

variable vectors that are not dominated within the entire feasible region are denoted as 

Pareto-optimal solutions. 
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One of the classical methods for solving the multi-objective problem is the 

weighting method. In this method, each objective function is allocated a weight, and the 

multi-objective problem is converted into a single-objective problem as follows. 
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where wj ≥  0 and 121 =+++ mwww L . One Pareto-optimal solution can be obtained 

by giving a weight parameter set. However, in this method, the huge amount of 

calculation is required to obtain the entire set of Pareto-optimal solutions. 

 

Global multi-objective optimization methods 

The multi-objective ES [Fujihara et al. [1]] and the MOCOM-UA [Yapo et al. [2]] are 

investigated. The multi-objective ES is the method that combines the Evolution Strategy 

(ES) [Schwefel [3, 4]] with the Pareto ranking. The main feature of the ES is that its 

principal search procedure is mutation, which is formulated as follows. 
 

)1,0(''''' iiii Nσxx +=  (2) 

))1,0()1,0('exp(''' iii NτNτσσ +=  (3) 
 

where ni ,,1 L= , n is the number of decision variables, iσ are mutation parameters, Ni 

(0,1) are normal random variables for each decision variable, N(0,1) is a normal random 

variable and 'τ and τ are operation parameters; 21)2(' −
∝ nτ and 2121 )2( −

∝ nτ . The self-

adaptation strategy is introduced to automatically update the standard deviations iσ , 

which are treated as gene as well as the decision variables ix . Therefore, each individual 

a is represented as a = (x,σ ). The recombination is formulated as follows. 

Figure 1. The Tank Model. 
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where ikx ,1
 and ikx ,2

 are two parent individuals selected at random from the population, 

iχ  is a uniform random variable over [0, 1] and µ  is the number of the population. 

The Pareto ranking [Goldberg [5]] is adopted as a fitness evaluation. In this ranking, 

all the nondominated individuals in the population are assigned the rank 1. These 

individuals are set aside, and the nondominated individuals in the remaining population 

are assigned the rank 2. In the selection procedure of the ES, individuals which have the 

small order of this rank are preferentially selected. 

The MOCOM-UA is a general-purpose global multi-objective optimization 

algorithm, which combines the controlled random search with the competitive evolution, 

Pareto ranking, and newly developed strategy of multi-objective downhill simplex search. 

Iterative application of the ranking and evolution procedures makes the entire population 

to converge toward the Pareto-optimal solutions. The procedure terminates automatically 

when all individuals in the population become nondominated. 

 

Application conditions 

Multi-objective optimization of the Tank Model is investigated using historical data of 

the Eigenji Dam Basin. RMSE (root mean square error) that emphasizes the error at high 

flows and RR (root mean square of relative error) that emphasizes the error at low flows 

were used as objective functions and these functions are simultaneously minimized. 
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where N is the number of data, Qm is the mean observed daily runoff depth, and Qct and 

Qot are the calculated and observed daily runoff depths, respectively. The water balance 

constraint given in Eq. (9) was introduced by using a penalty function. 
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where ε  is the permitted error of the water balance. ε  was set equal to 0.02 here. 

The strict Pareto-optimal solutions of this problem are obtained by the weighting 

method. The converted single-objective problem is solved by using the SCE-UA [Duan et 

al. [6]]. The solutions are compared with those of the ES and the MOCOM-UA, and the 

accuracy of these solutions is examined. In the application of the weighting method, 100 
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optimization runs with different initial populations were conducted for one of the weight 

parameters and the run of minimum function value was adopted. The weight parameter 

was set from 0.0 to 1.0 at 0.05 intervals. Consequently, it was needed about 21 ×  10
7
 

function evaluations to obtain 21 strict Pareto-optimal solutions. 

 

Results 

In the application of the multi-objective ES, when the number of function evaluations 

reached 10
6
, the multi-objective optimization run was terminated and 237 Pareto-optimal 

solutions were obtained. In the application of the MOCOM-UA, a population size of 500 

was selected [Yapo et al. [2]]. The MOCOM-UA required about 8 × 10
5
 function 

evaluations until all individuals are assigned the rank 1. 

Figure 2 illustrate the relationship between RMSE and RR in objective space 

obtained by three multi-objective optimization methods. Results show that Pareto-optimal 

solutions by the multi-objective ES are almost the same as those by the weighting method 

and a large number of Pareto-optimal solutions are obtained by relatively small amount 

of calculation. Moreover, some parts of Pareto-optimal solutions are not obtained by the 

weighting method but the multi-objective ES solutions are obtained continually. On the 

other hand, The MOCOM-UA estimates 500 Pareto-optimal solutions. However, almost 

all solutions converge into one part and the entire Pareto-optimal solutions cannot be 

obtained.  

In terms of the accuracy of Pareto-optimal solutions and computational efficiency, 

the multi-objective ES is superior to the MOCOM-UA and is considered to be effective 

and efficient in multi-objective optimization of rainfall-runoff model parameters. 

 

 

 
(a) ES and weighting method          (b) MOCOM-UA and weighting method 

 

Figure 2. Relationship between RMSE and RR of Pareto-optimal solutions. 
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PERFORMANCE EVALUATION OF RAINFALL-RUNOFF MODELS 

 

Application conditions 

In addition to the Eigenji Dam Basin, the multi-objective Tank Model optimization is 

applied to the Osako and Syorenji Dam Basin. Furthermore, the multi-objective 

optimizations of 2-layer (8 parameters) and 3-layer Tank Model (12 parameters) are 

carried out using historical data of the Eigenji Dam Basin and, results are compared with 

the 4-layer case (16 parameters). The objective functions and constraints are the same as 

those of the previous section. Here, parameters are optimized by using the multi-objective 

ES, which showed the best performance in solving multi-objective problems. 

 

Results 

The relationship between RMSE and RR for the Eigenji, Osako and Syorenji Dam Basin 

is shown in Figure 3. RR and RMSE have typical trade-off relationship, and the parameter 

set that simultaneously minimizes both objective functions cannot be obtained. In the 

case of the Osako Dam Basin, in order to make the value of RR smaller than about 0.23, 

the value of RMSE has to be very large. On the other hand, in the case of the Syorenji 

Dam Basin, in order to make the value of RMSE smaller than about 0.84, the value of RR 

has to be very large. In such cases, if we desire the model parameter set that gives good 

agreement of observed and simulated hydrographs across all flow ranges, the parameter 

set corresponding to the bending point of the Pareto-optimal solutions in objective space 

should be selected in order to avoid the extreme degradation of RR or RMSE. Thus, the 

parameter set suited for an analysis purpose can be selected rationally by using shape of 

Pareto-optimal solutions in the objective space. 

The relationship between RMSE and RR for 2-layer, 3-layer and 4-layer Tank Model 

is shown in Figure 4. In the case of the 3-layer and 4-layer Tank Model, if we desire the 

model parameter set that gives good fit at all flow ranges of hydrograph, the parameter 

Figure 3. Relationship between RMSE and RR: Eigenji, Osako and Syorenji. 
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set corresponding to the bending point of the Pareto-optimal solutions can be selected as 

same as the above example (Figure 3). However, in the 2-layer Model, it is difficult to 

select such a solution because the shape of the Pareto-optimal solutions in objective space 

is almost straight and there is not a bending point. Therefore, the model that can simulate 

both low and high flows with good accuracy cannot be obtained in the 2-layer case. 

The hydrograph ranges associated with the Pareto-optimal solutions for 2-layer and 

4-layer Tank Model are presented in Figure 5 and Figure 6, respectively. The hydrograph 

range of 2-layer is extremely larger than that of 4-layer. Especially, the hydrograph range 

of 2-layer is extremely large at low flows. The observed hydrograph is not within the 

range and the simulated hydrograph underestimates continuously. The range of 3-layer 

not shown here is almost similar to that of 2-layer. From these results, it is found that 2-

layer and 3-layer Tank Model are not suited to simulate hydrographs in this basin. Thus, 

the inadequacy and limitation of rainfall-runoff models can be identified and the 

performance evaluation of rainfall-runoff models can be conducted by using multi-

objective approach. 

 

CONCLUSIONS 

 

In this study, the multi-objective optimization of the Tank Model was carried out and the 

effectiveness of multi-objective optimization approach for performance evaluation of 

rainfall-runoff models was investigated. The results are summarized as follows: (1) The 

multi-objective ES is superior to the MOCOM-UA in terms of the accuracy of Pareto-

optimal solutions and is effective and efficient in multi-objective optimization of rainfall-

runoff model parameters. (2) The shape of Pareto-optimal solutions in objective space 

makes it possible to select the rational parameter set suited for an analysis purpose. (3) 

Using multi-objective optimization approach, the inadequacy and limitation of rainfall-

runoff models can be identified and the performance evaluation of rainfall-runoff models 

can be performed effectively. 

Figure 4. Relationship between RMSE and RR: 2-layer, 3-layer and 4-layer. 
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Figure 6. Simulated daily runoff hydrograph: 4-layer, Eigenji (1984). 

Figure 5. Simulated daily runoff hydrograph: 2-layer, Eigenji (1984). 


